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ABSTRACT

The paper proposes a new simple technique for compensation of Zero Order Hold
(ZOH) effects in digital control systems. Given a feedback dynamic system and an analog
controller designed in the S-domain, which is discretized by an arbitrary S to Z
transformation, an addition of a pole-zero pair in the Z-domain is shown to significantly
compensate for the gain and phase changes due to the ZOH.

Applying the proposed method to a variety of examples, including "bench-mark"
examples studied by other researchers, the closed-loop performance of the digital control

system is compared to the analog system performance in the time and frequency domains.



I. THE PROPOSED METHOD

Digital control design through discretizing an analog controller has been the topic
of much controversy [1]. The problem is as follows: given a process Gp(s), sensor H(s)
and a presumably well designed analog controller G.(s) (Fig. 1a), find a digital controller
D(z) (Fig. 1b) which produces closed-loop behavior similar to the analog system both in

the time and frequency domains.
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Fig. 1a The analog closed-loop control system Fig. 1b The digital closed-loop control system

Unquestionably, analog control design followed by controller discretization is far
more convenient than direct digital control design for the main reason that the sampling

period value T affects the design process only at the final phase and not up front [2]. As
observed in [2] and by many practicing engineers, for a sufficiently high sampling rate %,

most discretizing methods produce closed-loop performance which well approximates the
analog control performance. In other words, the discretizing problem is meaningful only
for relatively low sampling rates. Our goal in this paper is to share with the readers a
simple and highly practical Zero Order Hold (ZOH) compensation technique that we have
successfully applied to many "bench-mark" problems studied by the above and other
researchers, and to other design problems. What we found is that adding this
compensation to a discretized controller which maintains closed-loop stability results in a

noticeable improved performance.



The method is based on adding a pole-zero pair in the Z-plane to the digital
controller obtained through some suitable discretization methods, such as Tustin (bilinear)
transformation, with or without pre-warping. The additional pole and zero partially
compensate for the low and mid-frequencies phase and gain frequency response effects
contributed by the ZOH.

As is well known, the contributions of the ZOH and Gp(s) to the exact discrete

time pulse transfer function are not separable. Yet, generally speaking, regardless of the

Gp(s) effect, the ZOH causes a delay of approximately ; as shown intuitively in Figure 2.

after sampling and hold

original signal

Fig. 2 A reconstructed signal using ZOH and its smoothed approximation

A pole-zero compensation:

C)= 2% 1)
z+1

shown in Fig. 3 provides a phase of —%T- which exactly cancels the frequency phase

~sT

. The ZOH magnitude response is canceled

response of the ZOH as obtained from
§

at frequencies for which tan%— = %7-‘
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Fig. 3 The location of pole and zero of ZOH compensator in the Z-domain

It is interesting to note that this cancellation (up to a scale factor of —,11-;) is the

inverse of the Tustin transformation of the first order Pade approximation to the so-called

ZOH transfer function [3]:

1-e*T T
=T 2
1+—
2
Then:
T T z+1
T =y 3)
14+— z
2 |2 =t
T z+1

The method does not guarantee stable closed-loop system since it is independent
of the discretization method and the sampling rate. However one can investigate the
effects of the sampling rate by applying the polynomial root locus [4]. For a given stable
analog closed-loop system, a necessary condition for the proposed method to be used is

that the characteristic polynomial of the discretized system:



1+( 22 )D( )1- “)z{ (8 )} 0 4
Z+

where D(z) is an arbitrary discretized version of G¢(s), has all the polynomial roots inside
the unit circle.

In cases where the proposed compensation (1) causes closed-loop instability, a
modified ZOH compensation of the following form is to be considered:

2(z—¢)

C'(z)=
(2) z+1-2¢

&)

where € is a small positive constant. For closed-loop stability, the characteristic
polynomial implied by:
1+(M-)D(z)(1 - )Z{ (S )} 0 ©)
z+1-2¢
must have all roots inside the unit circle. Note that this modified compensation preserves
the DC gain of the controller. Figures 4a and 4b illustrate the effect of the new pole-zero

pair of the ZOH compensation.
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2. SUMMARY OF THE DESIGN PROCEDURE

1. Select a suitable S to Z transformation, i.e., Tustin (bilinear) transformation, and
sampling time T to discretize the existing analog controller G.(s) to obtain D(z).
2. Multiply the result of step (1) by C(z) = —2_% to obtain: ﬁ(z) = C(z)D(z).
b4
2a.  Match the open-loop DC gain of the digital control system to the analog system.
3. Check the closed-loop stability in Z-domain using equation (4). If stable, observe
the closed-loop system performance.
4. If in step (3) the closed-loop system becomes unstable, then:
’ - 2(2 —E) S — .
4a. Try C (z)—m for small £>0 to obtain D(z)= C’(z)D(z); use € as small
z —
as possible to guarantee better performance at the higher frequencies.
4b.  Match the open-loop DC gain of the analog and discretized systems.
4c.  Check the closed-loop stability in Z domain using equation (6). If stable, observe
the closed-loop system performance.
5. If the closed-loop system in step (4c) is still unstable, use other methods.
3. EXAMPLES
a. Lag Compensator [5]

Given the process

Gp(©)

4%10°

~5(s+20)(s+200) °

H(s)=1.

The following analog controller



Gc(s)=""

specifications: (a) velocity error constant, Ky at least 1000 s'L, (b) attenuation of all

sinusoidal inputs above 400 rad/s by at least 16, (b) steady-state error of (up to) 1% for

1 (s+8)
80 (s+0.1)

sinusoidal inputs less than 1 rad/s.

The following table is a summary of the discretization results for three different

sampling rates. The discretized controller D(z) using Tustin transformation is listed in the

second column. The third column is the ZOH compensation and the fourth column is the

complete controller ﬁ(z) using the proposed ZOH compensation. Note that in the third

row, with or without the ZOH compensator, the closed-loop system is unstable. The

was designed using Bode diagram to satisfy the following design

problem is overcome by using the modified compensator shown in the fourth row.

Figures 5.1a and b depict the closed-loop step and frequency responses
respectively, of the analog system and the digital control system using Tustin with and
without ZOH compensation for T=0.01 s. The ZOH compensation design method

performance matches the analog system's performance very well, while without the

D(z) Multiplier D(z)
T=001s 0.0130z-0.0120 2z 0.0260z% - 0.0240z
z-0.9990 z+1 z2 +0.0010z —0.9990
T=0.05s 0.0150z-0.0100 2z 0.0299 22 — 0.0200z
z—0.9950 z+1 z2 +0.0050z — 0.9950
T=0.1s Unstable 2z Unstable
0.0174z —0.0075 z+1 0.03482% —0.0150z
z—0.9900 22 +0.0100z —0.9900
T=01s Unstable 2(z-0.2) | 0.03482% -0.0219z+0.0030
2
0.01742—0.0075 | (z+0.6) 72 —0.3900z - 0.5940
z—0.9900
Table 1




compensation, the system has a slightly bigger overshoot as shown in Figures 5.1a. The
frequency response with and without ZOH compensation are shown in Figures 5.1b.
When reducing the sampling rate to T=0.05 s, the system with no compensation has a very
poor performance in time and frequency domains as shown in Figures 5.2a and 5.2b.
However, whereas with the ZOH compensation, the system performance is close to the
analog one.

Reducing the sampling rates even further to T=0.1 s results in an unstable closed-
loop system with and without compensation as shown in Table 1. Using the modified ZOH
compensation with €£=0.2 the closed-loop system becomes stable. The step response
shown in Fig. 5.3a demonstrates a relatively good performance while Tustin
transformation has made the closed-loop system unstable. Figure 5.3b shows the

frequency response of the closed-loop system using the modified ZOH compensator.

b. Lead-Lag Compensation [5]
Given
Gp(s) = 1000 ; H(s)=1.
s(14—) (14 ——)
10 250

The following analog controller

I+—=) 1+
Gels)=—tS 10

M S

has been designed using Bode diagram to meet several specifications: (a) phase margin of
at least 50°, (b) velocity error constant, Ky, at least 1000 sl (c) attenuation of the input

noise at 60 Hz and above by a factor of 100, and (d) the steady state error less than 1 rad/s



is less than 1%. Using Tustin transformation applied to G¢(s) provided with T=0.01 s, the

following digital controller is obtained:

D(z)= 0.65972z* —1.2897z + 0.6300
1.00z% —1.2893z +0.2900

With the ZOH compensation of 2Tzl’ the digital controller becomes
z

n 131947° - 2.57937% +1.26z
D(z)=— 3
7> —0.2893z2 - 0.9993z + 0.2900

Figures 6a and b depict the closed-loop step and frequency responses respectively, of the
analog system, and the digital control system using the Tustin transformation with and

without ZOH compensation. The effect of the ZOH compensation is evident.

c. Katz's example [6]
Given

863.3
2

Gp(s)=

the following analog controller

(s+29.4)
(s+294)>

G(5)=2940
has been designed to meet the following closed-loop system specifications: (a) the
maximum phase lag at =3 Hz should not be more than 13°, (b) at any given frequency the
closed-loop gain should not exceed 5 dB beyond the closed-loop DC gain, and (c)
maximum tracking error due to an input disturbance moment of 0.028 N.m should be 0.01
rad. Taking the Tustin transformation with pre-warping* at the sampling time T=0.03 s of
G(s), the following digital controller is obtained by [6]:

_ 1.89582% + 11685z —0.7273

D
(&) === 1165324 03395




This was the only discretization method that resulted in a stable closed-loop system at
such low sampling rate [3]. The same controller with the additional proposed ZOH

compensation is:

_ 379162 +2.3369z> —1.45462
2242165322 +1.5047z + 0.3395

Adding this ZOH compensation to the D(z), the system output at the sampling

ﬁ(z)

instants is significantly closer to the original analog step response, shown in Figure 7a.
Note also the improvement of the frequency response as shown in Figure 7b. Even though
the suggested compensator does not perform better than those obtained by Evans-
Kennedy [7] and Keller-Anderson[2] methods, the simplicity of the proposed method is
quite attractive.

* Katz 's pre-warping which warps the frequency of both pole and zero (reference [6]) differs from the

"regular” pre-warping which warps at one frequency.

d. Rattan's Example [8]

Given:;

10
s(s+1)

Gp(s) =

1+0.416s
1+0.319s

Gc(s)=
A digital controller proposed by Rattan (no design specifications are available in his
example) is :

3.436z-2.191
z2+0.2390

kan ()=

Using Tustin transformation to discretize the analog controller, the digital controller

becomes:



2.294z -1.5935
z-0.2991

Applying the modified ZOH compensation with € = 0.1 to D(z):

D(z)=

4.5888z% —3.6459z+0.3187

D(z)=
(3 == 3 050092 —0.2393

In Rattan's example, the closed-loop frequency matching in the W-domain has
shown better performance than Tustin and pre-warping methods at T=0.15 seconds [8].
Figure 8a shows that the step response of the closed-loop system using the modified ZOH
compensation has slightly lower overshoot than Rattan's method and by far better than
Tustin transformation without compensation. The frequency response of the analog
closed-loop system, digital closed-loop system using Tustin transformation, Tustin with

ZOH compensation, and Rattan's method are all plotted in Figure 8b.
4. CONCLUSION

This paper introduced a method to partially compensate for the ZOH effects of a
closed-loop digital control system. By multiplying a discretized given controller in Z-
domain by a pole-zero pair, a significant closed-loop performance improvement has been

achieved in many design examples. We hope that practicing engineers find this method

useful.
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Fig. 5.1b Closed-Loop Frequency Response of Example Part (a) with T=0.01 s
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